
Checking out JSON.Search function in MBS
FileMaker Plugin
JMESPath (pronounced "jay-mess-path") is a query language and a
specification for searching and extracting data from JSON documents. It
provides a way to perform complex queries and transformations on
JSON data, making it easier to work with structured data within JSON
objects. JMESPath is similar in concept to other query languages like
SQL for databases or XPath for XML documents, but it's specifically
designed for JSON.

We add JMESPath to our MBS FileMaker Plugin for the upcoming version
13.5 with the JSON.Search function. You may use this function to find
things and then also check JSON.Replace to replace values you selected
with an expression.

Here are some key features and concepts of JMESPath:
1. Path Expressions:

JMESPath uses path expressions to navigate and query JSON data.
These expressions are a sequence of identifiers and operators that
specify a path within the JSON structure to locate data.

2. Wildcards:
JMESPath allows you to use wildcards like `*` to match all
elements within an array or object, and `**` to search recursively
through nested structures.

3. Filters:
You can use filter expressions within JMESPath to select elements
that meet specific conditions. For example, you can filter a list of
objects to only include those with a certain property or value.

4. Functions:
JMESPath includes a variety of functions that can be used to
manipulate and transform data during queries. Functions like
`map()`, `join()`, and `slice()` can be used to process data.

5. Projection:
JMESPath supports projection, which means you can specify the
shape of the output data. This allows you to return only the
specific attributes or elements you're interested in, creating a
more focused result.

6. Piping:
JMESPath supports the pipe operator (`|`) to chain multiple
operations together, allowing you to create complex queries by
combining filters, projections, and functions.

https://www.mbsplugins.de/archive/2023-10-17/Checking_out_JSONSearch_functi/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.de/archive/2023-10-17/Checking_out_JSONSearch_functi/monkeybreadsoftware_blog_filemaker
https://www.monkeybreadsoftware.com/filemaker/
https://www.mbsplugins.eu/JSONSearch.shtml
https://www.mbsplugins.eu/JSONReplace.shtml

Here's an example JMESPath query to illustrate some of these concepts.
Suppose you have a JSON document representing a list of people, each
with a "name", "city" and "age" property:

{
 "people": [
 {
 "name": "Alice",
 "age": 30,
 "city": "New York"
 },
 {
 "name": "Bob",
 "age": 25,
 "city": "San Francisco"
 },
 {
 "name": "Charlie",
 "age": 35,
 "city": "Los Angeles"
 }
]
}

You can use JMESPath to extract the names of people who are older
than 30:

people[?age > `30`].name

The result of this query would be:

["Charlie"]

Let's try a bigger example with filter, projection and piping.
You want to filter the people who are older than 26, then project their
names and cities, and finally sort the result by name. You can do this
with the following JMESPath query that uses piping:

people[?age > `26`].{Name: name, City: city} | sort_by(@,
&Name)

This query breaks down as follows:
• people[?age > `26`]:

This part filters the "people" array to include only objects where
the "age" is greater than 26.

• [{Name: name, City: city}]:
Next, the result is piped into a projection operation that constructs
new objects with "Name" and "City" properties, renaming the
"name" and "city" properties.

• sort_by(@, &Name):
Finally the new records are sorted by the "Name" attribute in
ascending order (`&name`).

The result of this query would be:

[
 {
 "Name": "Alice",
 "City": "New York"
 },
 {
 "Name": "Charlie",
 "City": "Los Angeles"
 }
]

In this result, two people are included, and their name and city are
projected, sorted by name. This showcases the use of piping in
JMESPath for complex data transformation operations, especially when
you need to change the key names for JSON objects.

JMESPath is widely used in various contexts, especially when working
with APIs that return data in JSON format. It provides a standardized
way to access and manipulate JSON data, making it valuable for data
analysis, transformation, and integration tasks. JMESPath libraries and
tools are available for many programming languages to make it easier
to use JMESPath in your applications.

Please let us know if you have questions.

