
Looping over records in FileMaker with error
checking

Recently I got a client complaining about a crash in FileMaker Server with a script
using plugin functions. A look on the trace output from our plugin via MBS("Trace";
$path) function call to write a log file showed the problem. The loops where
running endless. And an endless loop eventually causes trouble when some
resource is limited, e.g. available memory.

Looking on the script we basically found this a couple of times:

Go to Layout [“MyTable” (MyTABLE) ; Animation: None]
Perform Find [Restore]
Go to Record/Request/Page [First]
Loop

process record

next
Go to Record/Request/Page [Next ; Exit after last: On]

End Loop

For privacy reasons, I removed the code to process the record and renamed the
layout and file here. But otherwise the script contains a few of those loops and not
all loops work well. Does the script look fine? Look and decide before you
continue to read.

Adding error handling

First thing missing in the script is error handling. Everything could go wrong. First
the call to "Go to Layout" may go wrong, so we need to add error handling there.
Go to layout may fail for a lot of reasons. First someone may have deleted the
target layout or the script step was pasted with Copy & Paste and nobody
reassigned a layout. If you go to a layout by name, someone may have renamed it
so the script step fails to find it. Security may kick in and disallow you leaving
current layout or entering the target layout.

Next Perform Find may go wrong. Whether it's security forbidding something,
missing or invalid search criteria. So let us prepare for an error here. But most
importing, you may just not find records, so you should have an IF to check
whether Get(FoundCount) > 0, before you enter the loop.

https://www.mbs-plugins.com/archive/2020-03-22/Looping_over_records_in_FileMa/monkeybreadsoftware_blog_filemaker
https://www.mbs-plugins.com/archive/2020-03-22/Looping_over_records_in_FileMa/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/Trace.shtml

The next line to go to first record may fail if there are no records, if you can't leave
current record or you can't enter the first record as it may be locked. Same for the
Go to Next Record script step in the loop. It will exit automatically when there are
no more records, but what does it do, if it can't move to the next record? Probably
stay and you have the endless loop.

So let us add error checks and the script gets much longer:

avoid error dialogs to user and don't let them cancel it
Set Error Capture [On]
Allow User Abort [Off]

go to first step
Go to Layout [“MyTable” (MyTABLE) ; Animation: None]
Set Variable [$error ; Value: Get(LastError)]
If [$error ≠ 0]

report to user
Show Custom Dialog ["Problem in script " & Get(ScriptName); "Failed to go

to layout with error " & $error]
return error to caller
Exit Script [Text Result: "Failed to go to layout with error " & $error]

End If

Perform Find [Restore]
Set Variable [$error ; Value: Get(LastError)]
If [$error ≠ 0]

report to user
Show Custom Dialog ["Problem in script " & Get(ScriptName); "Failed to

perform find with error " & $error]
return error to caller
Exit Script [Text Result: "Failed to perform find with error " & $error]

End If

Go to Record/Request/Page [First]
Set Variable [$error ; Value: Get(LastError)]
If [$error ≠ 0]

report to user
Show Custom Dialog ["Problem in script " & Get(ScriptName); "Failed to go

to first record with error " & $error]
return error to caller
Exit Script [Text Result: "Failed to go to first record with error " & $error]

End If

Set Variable [$$list ; Value: ""]
If [Get(FoundCount) > 0]

Loop
process record

Set Variable [$$list ; Value: $$List & Contacts::First & ¶]

next
Go to Record/Request/Page [Next ; Exit after last: On]
Set Variable [$error ; Value: Get(LastError)]
If [$error ≠ 0]

report to user
Show Custom Dialog ["Problem in script " & Get(ScriptName);

"Failed to go to next record with error " & $error]
return error to caller
Exit Script [Text Result: "Failed to go to next record with error "

& $error]
End If

End Loop
End If

Exit Script [Text Result: "OK"]

You see we have a lot of error handling now. Can we make this shorter and log
errors better? Yes, we can use FMSQL functions with MBS FileMaker Plugin to
write an error log in the database. Please create a table ErrorLog and add a few
fields:

TS Timestamp
ErrorMessage Text
ErrorCode Number
ScriptName Text
AccountName Text
RecordID Number
TableName Text

You can add more fields as needed later. Now we define a new custom function
named CheckError with a parameter Operation. The function is defined with one
Let statement like this:

Let ([
errorCode = Get(LastError);
errorMessage = get(LastExternalErrorDetail);
hasError = (errorCode ≠ 0);
$$error = If (hasError ; "Failed to " & Operation & " with error " & errorCode; "");

log = If (hasError ;

https://www.monkeybreadsoftware.com/filemaker/

MBS("FM.InsertRecord"; Get(FileName); "ErrorLog";
"TS"; get(CurrentTimestamp);
"ErrorMessage"; errorMessage;
"ErrorCode"; errorCode;
"ScriptName"; get(ScriptName);
"AccountName"; get(AccountName);
"RecordID"; get(RecordID);
"TableName"; get(LayoutTableName);
"Operation"; Operation

))

]; hasError)

As you see we query error status from FileMaker and check if the error code is not
zero. If we have an error, we use SQL functions in MBS FileMaker Plugin to log
the error to a table. Please make sure you have a table occurrence for ErrorLog in
your relationship graph.

The Operation parameter to the CheckError function is used to log what we tried
to do in the script and is used to populate the error message. If you have multiple
"Go To Layout" script steps, you may prefer to include a prefix to specify which
calls. If ever FileMaker gets a Get(LineNumber) function, we could query it here to
return the line number in the current script.

We set $$error with the error message as we return that from the script in case of
an error. This helps to avoid us typing the error message twice when using the
Custom Function as we can return $$error in the Exit Script step. Also you can
see it in data viewer when stepping through the script.

The MBS call to FM.InsertRecord creates the log record. This is a thin wrapper
around FM.ExecuteFileSQL where the plugin builds the SQL itself. Be sure to test
this once to make sure you have all data types correctly. e.g. if you created
RecordID as text field, you may see "[MBS] ERROR: FQL0013/(1:134):
Incompatible types in assignment." as the record number from Get(RecordID) is a
number. Be sure to verify the custom function works.

If you like to see a message box, you can add this line to the Let statement's list of
assignments:

r = if (hasError; MBS("MsgBox"; $$error));

This uses our little Msgbox function to show a dialog box with the error message.

https://www.mbsplugins.eu/FMInsertRecord.shtml
https://www.mbsplugins.eu/component_SQL.shtml
https://www.monkeybreadsoftware.com/filemaker/
https://www.mbsplugins.eu/FMInsertRecord.shtml
https://www.mbsplugins.eu/FMExecuteFileSQL.shtml

Check for context

Not sure if you know it, but be prepared for every script to be triggered at anytime
by anyone. You probably enable fmp:// URL script triggering, AppleScript access
or you may use a plugin with a start script function. Even the FileMaker iOS SDK
provides a function to trigger scripts from your delegate in Swift or Objective-C.

As a little check, we may just check if the current privilege name is [Full Access] to
make sure it's not a regular user account:

If [Get(CurrentPrivilegeSetName) ≠ "[Full Access]"]
Exit Script [Text Result: "Not allowed to run here."]

End If

Some scripts are supposed to run on server or client, so you can check the server
status via Get(ApplicationVersion) and exit the script if called on the wrong
process:

If [Position(Get(ApplicationVersion);"server";1;1) = 0]
not on server
Exit Script [Text Result: "Must run on server."]

End If

Final Script

The final script looks like this:

avoid error dialogs to user and don't let them cancel it
Set Error Capture [On]
Allow User Abort [Off]

If [Get(CurrentPrivilegeSetName) ≠ "[Full Access]"]

Exit Script [Text Result: "Not allowed to run here."]
End If

go to first step
Go to Layout [“MyTable” (MyTABLE) ; Animation: None]
If [CheckError("Go To Layout")]

Exit Script [Text Result: $$error]
End If

Perform Find [Restore]
If [CheckError("Perform Find")]

Exit Script [Text Result: $$error]
End If

Go to Record/Request/Page [First]
If [CheckError("Go To First Record")]

Exit Script [Text Result: $$error]
End If

If [Get(FoundCount) > 0]

Loop
process record

next
Go to Record/Request/Page [Next ; Exit after last: On]
If [CheckError("Go Next Record")]

Exit Script [Text Result: $$error]
End If

End Loop
End If

Exit Script [Text Result: "OK"]

Please don't hesitate to send us your comments and questions. I wonder if we
missed something?

