ri ri r for moving window

Let us show you how we can use our Window functions in combination with
Schedule functions to trigger a script the a window moved in FileMaker. You may
know there is a layout size changed trigger, so you notice when a window was
resized by the user, but there is no script trigger for moving window built-in. Let's
build one.

We build this example script, which starts with setting our parameters on which
script to trigger with what parameter and in which file. Then we query the current
window to get the reference number. This allows us to later even check the right
window, when it is in the background. We query the current position and store it in
the tag for the window. The tag is a value you can store to an object in MBS
FileMaker Plugin and it allows you to store something related to the window. If you
store multiple values, you may use JSON instead. We then schedule a dummy
expression to get the reference number for the schedule, since we include it in the
expression. Now we can build the expression and we look into that further below.
Important is that we replace place holders with the actual values. Then we can put
back the expression for the schedule and remember the schedule reference in
case you like to stop it by script. Take a look here:

our settings

Set Variable [$FileName ; Value: Get(FileName)]

Set Variable [$ScriptName ; Value: "Moved"]

Set Variable [$ScriptParameter ; Value: "]

#

now build it

Set Variable [$currentWindow ; Value: MBS("Window.Current")]

Set Variable [$WindowPos ; Value: MBS("Window.GetLeft"; $currentWindow) &
"/" & MBS("Window.GetTop"; $currentWindow)]

we store the position in the window tag right with the plugin

Set Variable [$r ; Value: MBS("Window.SetTag"; $currentWindow;

$WindowPos)]

init schedule

Set Variable [$ScheduleRef ; Value: MBS("Schedule.EvaluateAfterDelay"; 1 /*
every second */; "1" /* dummy expression */; ""; ""; 1 /* repeat after every second */

)]

Set Variable [$expression ; Value: "Let ([

currentWindow = $$$currentWindow;
scheduleRef = $$$scheduleRef;
FileName = $$$FileName;

ScriptName = $$$ScriptName;
ScriptParameter = $$$ScriptParameter;

https://www.mbsplugins.de/archive/2022-10-07/Script_trigger_for_moving_wind/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/component_Window.shtml
https://www.mbsplugins.eu/component_Schedule.shtml
https://www.monkeybreadsoftware.com/filemaker/
https://www.monkeybreadsoftware.com/filemaker/
http://www.mbsplugins.eu/WindowCurrent.shtml
http://www.mbsplugins.eu/WindowGetLeft.shtml
http://www.mbsplugins.eu/WindowGetTop.shtml
http://www.mbsplugins.eu/WindowSetTag.shtml
http://www.mbsplugins.eu/ScheduleEvaluateAfterDelay.shtml

oldWindowPos = MBS(\"Window.GetTag\"; currentWindow);

closed = MBS(\"IsError\");

newWindowPos = MBS(\"Window.GetLeft\"; currentWindow) & \"\" &
MBS(\"Window.GetTop\"; currentWindow);

r = If(oldWindowPos # newWindowPos;
MBS(\"Window.SetTag\"; currentWindow; newWindowPos) &
MBS(\"FM.RunScript\"; FileName; ScriptName; ScriptParameter);
0);

r = If(closed;
MBS(\"Schedule.Release\"; scheduleRef);
0)

AN]

Set Variable [$expression ; Value: Substitute($expression; "$$$ScriptParameter";
Quote($ScriptParameter))]

Set Variable [$expression ; Value: Substitute($expression; "$$$FileName";
Quote($FileName))]

Set Variable [$expression ; Value: Substitute($expression; "$$$ScriptName";
Quote($ScriptName))]

Set Variable [$expression ; Value: Substitute($expression; "$$$scheduleRef";
$scheduleRef)]

Set Variable [$expression ; Value: Substitute($expression; "$$$currentWindow";
$currentWindow)]

Set Variable [$r ; Value: MBS("Schedule.SetEvaluate"; $ScheduleRef;
$Expression)]

Set Variable [$$MovedSchedule ; Value: $ScheduleRef |

Let's take a look on the expression below without the extra escaping for the
quotes and some coloring:

Let ([

currentWindow = $$$currentWindow;
scheduleRef = $$$scheduleRef;
FileName = $$$FileName;

ScriptName = $$$ScriptName;
ScriptParameter = $$$ScriptParameter;

oldWindowPos = MBS("Window.GetTag"; currentWindow);

closed = MBS("IsError");

newWindowPos = MBS("Window.GetLeft"; currentWindow) & "/" &
MBS("Window.GetTop"; currentWindow);

r = If(oldWindowPos # newWindowPos;

http://www.mbsplugins.eu/ScheduleSetEvaluate.shtml
http://www.mbsplugins.eu/WindowGetTag.shtml
http://www.mbsplugins.eu/IsError.shtml
http://www.mbsplugins.eu/WindowGetLeft.shtml
http://www.mbsplugins.eu/WindowGetTop.shtml

MBS("Window.SetTag"; currentWindow; newWindowPos) &
MBS("EM.RunScript"; FileName; ScriptName; ScriptParameter);
0);

r = If(closed;
MBS("Schedule.Release"; scheduleRef);
0)

I

In the Let statement we first have all values needed in local variables. Then we
query the window tag to get the last position. If that fails and we get an error, the
window probably got closed and we like to later release the schedule. If we got the
position, we query the new position. Then if those don't match, we first store the
new position and trigger a script.

Please be aware, that this solution should work in a database with multiple
windows since each window gets their own schedule entry. But note that the user
may quickly move the window and cause multiple script triggers, which then may
get queued if FileMaker is busy.

Let us know if it works.

http://www.mbsplugins.eu/WindowSetTag.shtml
http://www.mbsplugins.eu/FMRunScript.shtml
http://www.mbsplugins.eu/ScheduleRelease.shtml

