
Watch MongoDB Database
Did you know that MongoDB has a watch feature (change stream) to see what
happens in the database?

You can watch a client (your connection) with MongoDB.WatchClient, a database
with MongoDB.WatchDatabase or just a collection with MongoDB.WatchCollection
function. Once watch is active, you can query MongoDB.NextChange regularly
and see if you get a JSON with a new change. In our example database, we run a
schedule to look for new changes every 5 seconds and this shows the change as
new record in our example. You can use this feature for various purposes,
including:

1. Real-time Data Synchronization: You can use watch feature to keep data
in sync across different parts of your application or between different
services. When a change occurs in a MongoDB collection, you can capture
that change and react accordingly to keep your data up-to-date, e.g. copy
values to FileMaker.

2. Notification Systems: You can implement real-time notification systems,
such as sending alerts, emails, or messages to users or applications when
specific changes or events happen in the database. This is useful for
building chat applications, social networks, or any application that requires
real-time updates.

3. Data Replication: Change Streams can be used to replicate data between
MongoDB instances or databases. For example, you can replicate data from
a primary MongoDB server to one or more secondary servers for fault
tolerance and load distribution.

4. Auditing and Logging: You can track and log changes made to your data
for auditing purposes. This can help you maintain a record of who made
changes, when they were made, and what the changes were.

5. Triggers and Workflow Automation: You can use Change Streams to
trigger specific actions or workflows when certain events occur in your

https://www.mbsplugins.de/archive/2023-11-04/Watch_MongoDB_Database/monkeybreadsoftware_blog_filemaker
https://www.mbsplugins.eu/MongoDBWatchClient.shtml
https://www.mbsplugins.eu/MongoDBWatchDatabase.shtml
https://www.mbsplugins.eu/MongoDBWatchCollection.shtml
https://www.mbsplugins.eu/MongoDBNextChange.shtml

database. For example, you can automatically update related documents or
trigger external services in response to changes.

6. Data Analytics and Reporting: Real-time data feeds from Change
Streams can be used for building analytics dashboards and generating real-
time reports based on the changes happening in your MongoDB database.

7. Caching: You can use Change Streams to update cache data whenever
there are changes in the database. This can help improve the performance
of your applications by serving frequently accessed data from cache.

8. Building Live Feeds: If you're developing applications that require live
feeds or activity streams (e.g., social media timelines or news feeds),
Change Streams can help you efficiently implement these features.

9. Data Transformation: You can use Change Streams to trigger data
transformation processes, ensuring that your data remains consistent and
conforms to the desired format.

10. Reactive Programming: Change Streams can be integrated into reactive
programming frameworks or libraries to create responsive and event-driven
applications.

MongoDB Change Streams provide a flexible and powerful way to react to
database changes in real-time, making them a valuable tool for a wide range of
applications that require real-time data processing and synchronization.

Back in FileMaker you would open the database with MongoDB.OpenDatabase
and then start watching changes in that database with MongoDB.WatchDatabase
and then call MongoDB.NextChange regularly to pick up new data. That may be a
script scheduled to run on FileMaker Server in an endless loop to process
incoming changes. Or like in the example below use Schedule to evaluate an
expression every 5 seconds to check for changes and if a change happened,
trigger a script to pick it up.

Set Variable [$r ; Value: MBS("MongoDB.OpenDatabase"; $Mongo; MongoDB
Audit::Database Name)]
If [MBS("IsError")]

Set Variable [$x ; Value: MBS("MongoDB.Release"; $Mongo)]
Show Custom Dialog ["Failed to open database." ; $r]
Exit Script [Text Result:]

End If

Set Variable [$r ; Value: MBS("MongoDB.WatchDatabase"; $Mongo; "{}")]
If [MBS("IsError")]

Set Variable [$x ; Value: MBS("MongoDB.Release"; $Mongo)]
Show Custom Dialog ["Failed to watch database." ; $r]
Exit Script [Text Result:]

End If

https://www.mbsplugins.eu/MongoDBOpenDatabase.shtml
https://www.mbsplugins.eu/MongoDBWatchDatabase.shtml
https://www.mbsplugins.eu/MongoDBNextChange.shtml
http://www.mbsplugins.eu/MongoDBOpenDatabase.shtml
http://www.mbsplugins.eu/IsError.shtml
http://www.mbsplugins.eu/MongoDBRelease.shtml
http://www.mbsplugins.eu/MongoDBWatchDatabase.shtml
http://www.mbsplugins.eu/IsError.shtml
http://www.mbsplugins.eu/MongoDBRelease.shtml

success
Set Variable [$$MongoConnection ; Value: $Mongo]
schedule an expression to check status regularly every 5 seconds...
Set Variable [$$MongoSchedule ; Value: MBS("Schedule.EvaluateAfterDelay";
	 5 /* DelaySeconds*/;

	 "Let([

	 json = MBS(\"MongoDB.NextChange\"; $$MongoConnection);

	 r = If(Length(json) > 0; MBS(\"FM.RunScript\"; \"MongoDB Audit\";
\"LogChange\"; json); 0)]; \"\")";

	 "" /* ScriptFileName*/;

	 "" /* ScriptName*/;

	 5 /* RepeatDelay*/)]

The LogChange script gets the JSON of the change passed and stores it in a new
record using our FM.InsertRecord function with a bit of color thanks to
JSON.Colorize function. Since our insert command uses SQL, we don't need to do
a layout change and can run with whatever layout is currently showing. Also if
FileMaker is busy, the script triggers will queue and execute later when there is
time.

we trigger this script to do the logging
Set Variable [$json ; Value: MBS("JSON.Colorize"; Get(ScriptParameter))]
Set Variable [$r ; Value: MBS("FM.InsertRecord"; "MongoDB Audit"; "MongoDB
Audit"; "Change"; $json)]

Please try it and enjoy the new feature for 13.5 plugin version of MBS FileMaker
Plugin.

http://www.mbsplugins.eu/ScheduleEvaluateAfterDelay.shtml
https://www.mbsplugins.eu/FMInsertRecord.shtml
https://www.mbsplugins.eu/JSONColorize.shtml
http://www.mbsplugins.eu/JSONColorize.shtml
http://www.mbsplugins.eu/FMInsertRecord.shtml
https://www.monkeybreadsoftware.com/filemaker/
https://www.monkeybreadsoftware.com/filemaker/

